¿En qué se basó el famoso científico Einstein para triunfar?
Albert Einstein, el físico más grande del siglo XX, nació en marzo de 1879 en Ulm, en el suroeste de Alemania, y un año después se mudó a Munich con su familia. Los padres de Einstein eran judíos. Su padre, Hermann Einstein, y su tío, Jacob Einstein, abrieron conjuntamente una fábrica eléctrica para producir motores, lámparas de arco e instrumentos eléctricos para centrales eléctricas y sistemas de iluminación. La madre Pauline era ama de casa con educación secundaria. Amaba mucho la música y le enseñó a Einstein a tocar el violín cuando tenía seis años.
Einstein no era muy animado cuando era niño y no podía hablar incluso después de tener más de tres años. A sus padres les preocupaba que fuera mudo y lo llevaron a ver a un médico para un chequeo. Afortunadamente, Einstein no fue mudo, pero no habló con fluidez hasta los nueve años. Todo lo que dijo debía ser considerado cuidadosamente.
Cuando Einstein tenía cuatro o cinco años, estaba postrado en cama y su padre le regaló una brújula. Cuando descubrió que la brújula siempre apuntaba en una dirección fija, se sorprendió mucho y sintió que debía haber algo escondido detrás de este fenómeno. Jugó felizmente con la brújula durante varios días, molestando a su padre y a su tío Jacob con una serie de preguntas. Aunque ni siquiera podía pronunciar bien la palabra "magnético", quería obstinadamente saber por qué la brújula podía señalar la dirección. Einstein recordó vívidamente esta impresión profunda y duradera hasta los 67 años.
Cuando Einstein estaba en la escuela primaria y secundaria, sus tareas eran normales. Debido a que se mueve lentamente y no le agrada la gente, a sus profesores y compañeros no les agrada. Sus profesores de griego y latín lo odiaban aún más. Una vez lo regañó públicamente: "Einstein, nunca serás una persona exitosa cuando seas grande". Y como temía que su clase afectara a otros estudiantes, quiso echarlo de la escuela.
El tío de Einstein, Jacob, estaba a cargo de los asuntos técnicos en la fábrica de electrodomésticos, mientras que el padre de Einstein estaba a cargo de los contactos comerciales. Jacob es un ingeniero que ama las matemáticas. Cuando el pequeño Einstein venía a hacerle preguntas, siempre le presentaba sus conocimientos matemáticos en un lenguaje muy sencillo y popular. Bajo la influencia de su tío, Einstein fue iluminado anteriormente por la ciencia y la filosofía.
El negocio de mi padre no es bueno, pero es optimista y amable. La familia invitaba todas las noches a cenar a los estudiantes pobres que venían a estudiar a Múnich, lo que equivalía a ayudarles. Uno de ellos era Max y Bernard, un par de hermanos judíos de Lituania. Todos son estudiantes de medicina. Les gusta leer libros y tienen una amplia gama de intereses. Fueron invitados a cenar a la casa de Einstein y se hicieron buenos amigos del pequeño y tímido Einstein, que tenía cabello negro y ojos marrones.
Se puede decir que Max fue el “maestro inicial” de Einstein. Pidió prestados algunos libros populares de ciencias naturales para que los leyera. Cuando Einstein tenía doce años, Max le dio una copia del libro de texto de Speke sobre geometría plana. Reflexionando sobre este pequeño libro sagrado en sus últimos años, Einstein dijo: "Hay muchas afirmaciones en este libro, como que las tres alturas de un triángulo se cruzan en un punto. Aunque no son obvias en sí mismas, pueden demostrarse de manera confiable". y por eso cualquier duda parecía imposible. Esta claridad y confiabilidad me causaron una impresión indescriptible." Einstein también tuvo la suerte de aprender sobre ciencias naturales a través de un excelente libro de divulgación. Principales logros y métodos en este campo. Las lecturas populares no sólo aumentaron el conocimiento de Einstein, sino que también tocaron la fibra sensible de los jóvenes y le hicieron pensar profundamente sobre el problema.
A la edad de dieciséis años, Einstein postuló para el Departamento de Ingeniería del Instituto Federal Suizo de Tecnología en Zurich, pero suspendió el examen de ingreso. Aceptó el consejo del profesor Weber, presidente del Instituto Federal de Tecnología y famoso físico de la escuela, y completó sus estudios secundarios en la escuela secundaria estatal de Aarau, Suiza, para obtener un título de escuela secundaria.
En junio de 1896 5438+00, Einstein ingresó en la Universidad Técnica de Zurich y estudió matemáticas y física en el Departamento Normal. Estaba muy disgustado con la educación de adoctrinamiento en la escuela, pensando que dejaba a la gente sin tiempo ni interés para pensar en otros temas. Afortunadamente, la educación obligatoria que sofoca la verdadera motivación científica es mucho menos común en la ETH Zurich que en otras universidades. Einstein aprovechó al máximo la atmósfera libre de la escuela y se concentró en las materias que amaba. En la escuela, leyó extensamente las obras de maestros de la física como Helmholtz y Hertz. Lo que más le fascinaba era la teoría electromagnética de Maxwell. Tiene la capacidad de estudiar por sí mismo, el hábito de analizar problemas y la capacidad de pensar de forma independiente.
Primeros trabajos
En 1900, Einstein se graduó en la Universidad Técnica de Zurich.
Le negaron permanecer en la escuela porque no le entusiasmaban algunas clases y era indiferente hacia sus profesores. No pudo encontrar trabajo y se ganó la vida como tutor y profesor suplente. Después de estar desempleado durante un año y medio, Marcel Grossman, un compañero de clase que se preocupaba por su talento y lo entendía, le pidió ayuda. Grossmann logró convencer a su padre para que presentara a Einstein como técnico en la Oficina Suiza de Patentes.
Einstein agradeció a Grossman su ayuda de toda la vida. En su carta de condolencia a Grossmann, dijo que cuando se graduó de la universidad, "de repente fue abandonado por todos y sin poder afrontar la vida". Él me ayudó y, a través de él y de su padre, más tarde fui a Halle (Director). de la entonces Oficina Suiza de Patentes), entró en la oficina de patentes. En cierto modo me salvó la vida. Sin él, probablemente no moriría de hambre, pero mi espíritu estaría muy deprimido. "
El 21 de febrero de 1902, Einstein obtuvo la ciudadanía suiza y se mudó a Berna, a la espera de ser reclutado por la Oficina de Patentes. El 23 de junio de 1902, Einstein fue contratado oficialmente como técnico de tercer nivel por la Oficina de Patentes. Office. Su trabajo consistía en examinar diversos inventos tecnológicos para obtener patentes. En 1903, se casó con su compañera de la universidad Mileva Malik.
De 1900 a 1904, Einstein escribió un artículo cada año y lo publicó en la revista In. en el German Journal of Physics. Los dos primeros artículos trataban sobre la termodinámica de los niveles de líquidos y la electrólisis, tratando de darle a la química una base mecánica. Posteriormente se descubrió que este camino no era factible y se propusieron algunas teorías básicas de la mecánica estadística. 1901., tres artículos de 1902 a 1904 pertenecen a este campo.
El artículo de 1904 discutió cuidadosamente el fenómeno de fluctuación predicho por la mecánica estadística y encontró que la fluctuación de energía depende de la constante de Boltzmann. sistemas mecánicos y fenómenos térmicos, y también lo aplicó audazmente a los fenómenos de radiación para derivar la fórmula de fluctuación de la energía de la radiación, derivando así la ley de desplazamiento de Wien. Se lograron avances importantes tanto en la teoría de la radiación como en la teoría del movimiento molecular. Milagro de 1905
De 65438 a 0905, Einstein creó un milagro sin precedentes en la historia de la ciencia, escribió seis artículos en los seis meses de marzo a septiembre, utilizó su tiempo libre fuera del trabajo. horas al día en la oficina de patentes para hacer cuatro contribuciones que marcaron época en tres campos. Cuatro artículos importantes sobre la teoría cuántica de la luz, la medición del tamaño molecular, la teoría del movimiento browniano y la relatividad especial. Einstein envió los artículos que consideraba correctos a la redacción de los "Anales físicos" alemanes. Le dijo tímidamente al editor: "Me encantaría que pudiera encontrarme un espacio para publicar este artículo en su informe anual". "Este artículo "vergonzoso" se llama "Visiones especulativas sobre la generación y transformación de la luz".
Este artículo extiende el concepto cuántico propuesto por Planck en 1900 a la propagación de la luz en el espacio. hipótesis Se cree que: para los promedios de tiempo, la luz aparece como ondas; para los valores instantáneos, la luz aparece como partículas. Esta es la primera vez en la historia que se revela la unidad de las fluctuaciones y partículas de los objetos microscópicos, es decir, ondas. dualidad de partículas.
Al final de este artículo, explicó el efecto fotoeléctrico de una manera fácil de entender utilizando el concepto de cuantos de luz, y derivó la relación entre la energía máxima de los fotoelectrones y la frecuencia de la luz incidente hasta 10 años después, sólo fue confirmada por el experimento de Millikan. En 1921, Einstein ganó el Premio Nobel de Física por su "descubrimiento de la ley del efecto fotoeléctrico". Desde el principio, los tres campos de la luz, el calor y la física eléctrica avanzaban de la mano. En abril de 1905, Einstein completó un nuevo método para determinar el tamaño de las moléculas. En mayo completó la medición de partículas suspendidas en líquidos estacionarios. la teoría del movimiento molecular térmico. Estos fueron dos artículos sobre el movimiento browniano. El propósito de Einstein en ese momento era determinar el tamaño real de las moléculas observando el movimiento irregular de las partículas suspendidas causado por las fluctuaciones del movimiento molecular. los debates en los círculos científicos y filosóficos. La cuestión de si los átomos existieron durante más de un siglo.
Tres años después, el físico francés Perrin confirmó las predicciones teóricas de Einstein con experimentos precisos, demostrando así irreprochable la existencia objetiva. de átomos y moléculas, lo que también llevó al químico alemán Ostwald, el más decidido oponente del fundador de la teoría atómica y de la energía, a declarar proactivamente en 1908 que "la hipótesis atómica se ha convertido en una teoría científica con una base sólida".
En junio de 1905, Einstein completó el extenso artículo "Sobre la electrodinámica de los cuerpos de transporte", que marcó el comienzo de una nueva era de la física, y propuso por completo la teoría especial de la relatividad. Este es el resultado de los 10 años de elaboración y exploración de Einstein. Resolvió en gran medida la crisis de la física clásica de finales del siglo XIX, cambió la visión del espacio-tiempo de la mecánica newtoniana, reveló la equivalencia de materia y energía y creó una nueva. mundo. El mundo de la física es la mayor revolución en el campo de la física moderna.
La relatividad especial no solo puede explicar todos los fenómenos que pueden explicarse mediante la física clásica, sino que también puede explicar algunos fenómenos físicos que no pueden explicarse mediante la física clásica y predecir muchos efectos nuevos. La conclusión más importante de la teoría especial de la relatividad es que el principio de conservación de la masa pierde su independencia y se integra con la ley de conservación de la energía, provocando que masa y energía se transformen entre sí. Otros incluyen la escala lenta de los relojes, la velocidad constante de la luz, la masa cero en reposo de los fotones, etc. La mecánica clásica se ha convertido en el caso límite de la mecánica relativista a bajas velocidades. De esta manera se unifican la mecánica y el electromagnetismo a partir de la cinemática.
En septiembre de 1905, Einstein escribió un breve artículo, ¿Está relacionada la inercia de un objeto con la energía que contiene? ", como corolario de la teoría de la relatividad. La equivalencia masa-energía es la base teórica de la física nuclear y de la física de partículas, y también abrió el camino para la liberación y utilización de la energía nuclear en la década de 1940.
En estos cortos seis meses En su tiempo, se puede decir que los grandes logros de Einstein en la ciencia no tienen precedentes. Incluso si abandonara el estudio de la física, incluso si solo completara cualquiera de los tres logros anteriores, Einstein todavía estaría en él. Física. Einstein dejó una huella extremadamente importante en la historia del desarrollo y marcó el comienzo de una nueva era de la física más brillante.
Después del establecimiento de la teoría especial de la relatividad, Einstein no quedó satisfecho y trató de expandirla. ámbito de aplicación del principio de relatividad a sistemas no inerciales Encontró un gran avance en el descubrimiento de Galileo de que la aceleración de los objetos en el campo gravitacional universal es la misma, y en 1907 propuso Etc. Este año, su profesor universitario y famoso geómetra. Minkovsky propuso una representación espacial de cuatro dimensiones de la relatividad especial, que proporcionó una herramienta matemática útil para el desarrollo posterior de la relatividad. Lamentablemente, Einstein no era consciente de su valor. El descubrimiento del principio de equivalencia fue considerado por Einstein como el pensamiento más feliz de su vida, pero su trabajo posterior fue muy duro y dio un gran rodeo en 1911 cuando analizó la rigidez del disco y se dio cuenta de que la geometría euclidiana estaba en la gravitación. El campo no es estrictamente válido. Al mismo tiempo, se descubre que la variación de Lorentz no es universal y el principio de equivalencia sólo es válido en un área infinitesimal. En este momento, Ein ya tenía la idea de la relatividad general. pero todavía carecía de la base matemática necesaria para establecerlo.
En 1912, Einstein regresó a su alma mater en Zurich para trabajar como profesor de matemáticas en su alma mater. Con la ayuda de Grossmann, encontró el. Herramientas matemáticas para establecer la teoría general de la relatividad en la geometría de Riemann y el análisis de tensores. Después de un año de ardua cooperación, publicaron un importante artículo "Esquema de la teoría de la relatividad general y la gravitación" en 1913. Propusieron la teoría de la gravedad del campo de calibre. Esta fue la primera vez que se combinaron la gravedad y la métrica, dándole a la geometría de Riemann un significado físico real.
Pero la ecuación del campo gravitacional que obtuvieron en ese momento era solo para linealidad. La transformación es covariante y no tiene covarianza. bajo cualquier transformación de coordenadas requerida por el principio de la relatividad general, esto se debe a que Einstein no estaba familiarizado con las operaciones tensoriales en ese momento y creía erróneamente que mientras se observara la ley de conservación, las coordenadas debían restringirse para mantener la causalidad. en la elección del sistema, debemos renunciar al requisito de la covarianza universal.
El segundo pico de logros científicos
Los tres años comprendidos entre 1915 y 1917 fueron el segundo pico de Einstein. Los logros científicos de Stein, similares a los de 1905, también lograron logros históricos en tres campos diferentes. Además de la teoría general de la relatividad, que está reconocida como uno de los mayores logros en la historia del pensamiento humano, fue finalmente establecida en 1915. 1916. Propuso la teoría de las ondas gravitacionales en la radiación cuántica en 1917 y fundó la cosmología moderna en 1917. Después de julio de 1915, Einstein volvió a la covariación de todas las cosas después de más de dos años de desvíos. Desde junio de 1915 hasta el 110 de junio, se concentró en explorar nuevas ecuaciones del campo gravitacional, el 165438 de junio + 4, 11, 18 de octubre.
En el primer artículo, obtuvo la ecuación del campo gravitacional covariante universal que satisface la ley de conservación, pero añadió una restricción innecesaria.
En el tercer artículo, basándose en la nueva ecuación del campo gravitacional, se calculó que la desviación de la luz que pasa a través de la superficie del Sol era de 1,7 segundos de arco y que la precesión del perihelio de Mercurio era de 43 segundos cada 100 años, resolviendo por completo un problema. en astronomía durante los últimos 60 años. Gran problema.
En su artículo "Ecuaciones del campo gravitacional" del 25 de octubre de 19115, abandonó las restricciones innecesarias sobre el grupo de transformación, estableció una ecuación covariante del campo gravitacional verdaderamente universal y declaró la teoría general de la relatividad como una ecuación lógica. La estructura finalmente está terminada. En la primavera de 1916, Einstein escribió un artículo resumido "Los fundamentos de la teoría general de la relatividad"; a finales del mismo año, apareció un folleto popular "Sobre la teoría general y especial de la relatividad".
En junio de 1916, mientras estudiaba la integral aproximada de la ecuación del campo gravitacional, Einstein descubrió que un sistema mecánico inevitablemente emitiría ondas gravitacionales que se propagan a la velocidad de la luz cuando ésta cambia, y propuso así la teoría de las ondas gravitacionales. . En 1979, 24 años después de la muerte de Einstein, se demostró indirectamente la existencia de ondas gravitacionales.
En 1917, Einstein utilizó los resultados de la relatividad general para estudiar la estructura espacio-temporal del universo y publicó su innovador artículo "Investigación del universo basada en la relatividad general". Se analiza el concepto tradicional de “el universo es infinito en el espacio” y se señala que es incompatible con la teoría de la gravedad de Newton y la relatividad general. En su opinión, la posible salida es considerar el universo como una región continua cerrada con un volumen espacial limitado y utilizar argumentos científicos para inferir que el universo es infinito en el espacio. Se trata de una iniciativa audaz en la historia de la humanidad, que hace que la cosmología se deshaga de la pura especulación y entre en el campo de la ciencia moderna.
Una exploración larga y difícil